GCD and LCM

Dr. Amol Sonawane

Assistant Professor
Department of Mathematics
Government College of Arts and Science
Aurangabad

Divisibility

Recall: Set of integers,

$$\mathbb{Z} = \{ \cdots, -4, -3, -2, -1, 0, 1, 2, 3, 4, \cdots \}$$

Definition of divisibility:

Let $a, b \in \mathbb{Z}$ with $a \neq 0$. The integer a divides the integer b, if there exists $q \in \mathbb{Z}$ such that b = aq. It is denoted by $a \mid b$.

E.g.
$$2 \mid 6 \ (\because 6 = 2 \cdot 3)$$

Greatest Common Divisor (GCD/gcd) Or Highest Common Factor (HCF/hcf)

Definition:

Let $a, b \in \mathbb{Z}$ with $a \neq 0$ or $b \neq 0$. The positive integer d is said be a *greatest common divisor* of integers a and b, if d satisfies following two conditions:

- (i) $d \mid a$ and $d \mid b$.
- (ii) whenever $k \mid a$ and $k \mid b \implies k \le d$.

It is denoted by gcd(a, b) = d.

E.g. gcd(8, 12) = 4

(:: -1, 1, -2, 2, -4, 4) are common divisors of 8 and 12, and 4 is the greatest among all these common divisors.)

Note:

- If $a \mid b$, then gcd(a, b) = |a|.
- For any $a, b \in \mathbb{Z}$ with $a \neq 0$ or $b \neq 0$, gcd(a, b) = gcd(a, -b) = gcd(-a, b) = gcd(-a, -b).
- If gcd(a, b) = 1 with $a \neq 0$ and $b \neq 0$, then the integers a and b are said be relatively prime or co-primes.

Least Common Multiple (LCM/Icm)

Definition:

Let $a, b \in \mathbb{Z}$ with $a \neq 0$ and $b \neq 0$. The positive integer m is said be a *least common multiple* of integers a and b, if m satisfies following two conditions:

- (i) $a \mid m$ and $b \mid m$.
- (ii) whenever $a \mid k$ and $b \mid k$ for positive integer $k \implies m \le k$.

It is denoted by lcm(a, b) = m.

E.g. lcm(8,12) = 24 ($\because 24,48,72,96,\cdots$ are positive common multiples of 8 and 12, and 24 is the least among all these common multiples.)

Note:

- If $a \mid b$, then lcm(a, b) = |b|.
- For any $a,b \in \mathbb{Z}$ with $a \neq 0$ and $b \neq 0$, lcm(a,b) = lcm(a,-b) = lcm(-a,b) = lcm(-a,-b).
- If gcd(a,b) = 1 with $a \neq 0$ and $b \neq 0$, then lcm(a,b) = |ab|.

Relation between gcd and lcm:

Theorem

For positive integers a and b, $gcd(a,b) \cdot lcm(a,b) = a \cdot b$.

```
Proof. Let d = gcd(a, b). Then a = dr and b = ds for some integers r and s with gcd(r, s) = 1. Let m = \frac{ab}{d}. Then m = as and m = br. \implies m is a common multiple of a and b. Claim: m = lcm(a, b).
```

Relation between gcd and lcm:

Let k be a positive integer with $a \mid k$ and $b \mid k$. Claim: m < k. Since d = gcd(a, b), d = ax + by for some $x, y \in \mathbb{Z}$. Write $\frac{k}{m} = \frac{kd}{ab} = \frac{k(ax+by)}{ab} = \frac{kax}{ab} + \frac{kby}{ab} = \frac{k}{b}x + \frac{k}{a}y \in \mathbb{Z}$. $\implies m \mid k$. $\implies m \leq k$. (: m and k are positive integers.) $\implies m = lcm(a, b).$ $\implies lcm(a,b) = \frac{a \cdot b}{acd(a,b)}$. (:: $m = \frac{ab}{d}$.) $\implies qcd(a,b) \cdot lcm(a,b) = a \cdot b.$

Thank You!